Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-\L{}ojasiewicz Condition

نویسندگان

  • Hamed Karimi
  • Julie Nutini
  • Mark Schmidt
چکیده

In 1963, Polyak proposed a simple condition that is sufficient to show a global linear convergence rate for gradient descent. This condition is a special case of the Lojasiewicz inequality proposed in the same year, and it does not require strong convexity (or even convexity). In this work, we show that this much-older PolyakLojasiewicz (PL) inequality is actually weaker than the main conditions that have been explored to show linear convergence rates without strong convexity over the last 25 years. We also use the PL inequality to give new analyses of randomized and greedy coordinate descent methods, sign-based gradient descent methods, and stochastic gradient methods in the classic setting (with decreasing or constant step-sizes) as well as the variancereduced setting. We further propose a generalization that applies to proximal-gradient methods for non-smooth optimization, leading to simple proofs of linear convergence of these methods. Along the way, we give simple convergence results for a wide variety of problems in machine learning: least squares, logistic regression, boosting, resilient backpropagation, L1-regularization, support vector machines, stochastic dual coordinate ascent, and stochastic variance-reduced gradient methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Convergence of Proximal-Gradient Methods under the Polyak-Łojasiewicz Condition

In 1963, Polyak proposed a simple condition that is sufficient to show that gradient descent has a global linear convergence rate. This condition is a special case of the Łojasiewicz inequality proposed in the same year, and it does not require strong-convexity (or even convexity). In this work, we show that this much-older Polyak-Łojasiewicz (PL) inequality is actually weaker than the four mai...

متن کامل

Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition

I Simple proof of linear convergence. I For convex functions, equivalent to several of the above conditions. I For non-convex functions, weakest assumption while still guaranteeing global minimizer. ? We generalize the PL condition to analyze proximal-gradient methods. ? We give simple new analyses in a variety of settings: I Least-squares and logistic regression. I Randomized coordinate descen...

متن کامل

Extensions of the Hestenes-Stiefel and Polak-Ribiere-Polyak conjugate gradient methods with sufficient descent property

Using search directions of a recent class of three--term conjugate gradient methods, modified versions of the Hestenes-Stiefel and Polak-Ribiere-Polyak methods are proposed which satisfy the sufficient descent condition. The methods are shown to be globally convergent when the line search fulfills the (strong) Wolfe conditions. Numerical experiments are done on a set of CUTEr unconstrained opti...

متن کامل

Linear Convergence of Proximal Incremental Aggregated Gradient Methods under Quadratic Growth Condition

Under the strongly convex assumption, several recent works studied the global linear convergence rate of the proximal incremental aggregated gradient (PIAG) method for minimizing the sum of a large number of smooth component functions and a non-smooth convex function. In this paper, under the quadratic growth condition–a strictly weaker condition than the strongly convex assumption, we derive a...

متن کامل

An eigenvalue study on the sufficient descent property of a‎ ‎modified Polak-Ribière-Polyak conjugate gradient method

‎Based on an eigenvalue analysis‎, ‎a new proof for the sufficient‎ ‎descent property of the modified Polak-Ribière-Polyak conjugate‎ ‎gradient method proposed by Yu et al‎. ‎is presented‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016